Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Redox-Driven Signaling: 2-Oxo Acid Dehydrogenase Complexes as Sensors and Transmitters of Metabolic Imbalance.

Identifieur interne : 000126 ( Main/Exploration ); précédent : 000125; suivant : 000127

Redox-Driven Signaling: 2-Oxo Acid Dehydrogenase Complexes as Sensors and Transmitters of Metabolic Imbalance.

Auteurs : Victoria I. Bunik [Russie]

Source :

RBID : pubmed:30187773

Descripteurs français

English descriptors

Abstract

SIGNIFICANCE

This article develops a holistic view on production of reactive oxygen species (ROS) by 2-oxo acid dehydrogenase complexes. Recent Advances: Catalytic and structural properties of the complexes and their components evolved to minimize damaging effects of side reactions, including ROS generation, simultaneously exploiting the reactions for homeostatic signaling.

CRITICAL ISSUES

Side reactions of the complexes, characterized in vitro, are analyzed in view of protein interactions and conditions in vivo. Quantitative data support prevalence of the forward 2-oxo acid oxidation over the backward NADH oxidation in feeding physiologically significant ROS production by the complexes. Special focus on interactions between the active sites within 2-oxo acid dehydrogenase complexes highlights the central relevance of the complex-bound thiyl radicals in regulation of and signaling by complex-generated ROS. The thiyl radicals arise when dihydrolipoyl residues of the complexes regenerate FADH

FUTURE DIRECTIONS

Interaction of 2-oxo acid dehydrogenase complexes with thioredoxins (TRXs), peroxiredoxins, and glutaredoxins mediates scavenging of the thiyl radicals and ROS generated by the complexes, underlying signaling of disproportional availability of 2-oxo acids, CoA, and NAD


DOI: 10.1089/ars.2017.7311
PubMed: 30187773


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Redox-Driven Signaling: 2-Oxo Acid Dehydrogenase Complexes as Sensors and Transmitters of Metabolic Imbalance.</title>
<author>
<name sortKey="Bunik, Victoria I" sort="Bunik, Victoria I" uniqKey="Bunik V" first="Victoria I" last="Bunik">Victoria I. Bunik</name>
<affiliation wicri:level="3">
<nlm:affiliation>1 Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.</nlm:affiliation>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>1 Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow</wicri:regionArea>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>2 Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russian Federation.</nlm:affiliation>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>2 Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow</wicri:regionArea>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30187773</idno>
<idno type="pmid">30187773</idno>
<idno type="doi">10.1089/ars.2017.7311</idno>
<idno type="wicri:Area/Main/Corpus">000215</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000215</idno>
<idno type="wicri:Area/Main/Curation">000215</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000215</idno>
<idno type="wicri:Area/Main/Exploration">000215</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Redox-Driven Signaling: 2-Oxo Acid Dehydrogenase Complexes as Sensors and Transmitters of Metabolic Imbalance.</title>
<author>
<name sortKey="Bunik, Victoria I" sort="Bunik, Victoria I" uniqKey="Bunik V" first="Victoria I" last="Bunik">Victoria I. Bunik</name>
<affiliation wicri:level="3">
<nlm:affiliation>1 Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.</nlm:affiliation>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>1 Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow</wicri:regionArea>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>2 Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russian Federation.</nlm:affiliation>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>2 Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow</wicri:regionArea>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Antioxidants & redox signaling</title>
<idno type="eISSN">1557-7716</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Catalysis (MeSH)</term>
<term>Energy Metabolism (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Iron (metabolism)</term>
<term>Keto Acids (metabolism)</term>
<term>Mixed Function Oxygenases (chemistry)</term>
<term>Mixed Function Oxygenases (metabolism)</term>
<term>Multienzyme Complexes (chemistry)</term>
<term>Multienzyme Complexes (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxygen (chemistry)</term>
<term>Oxygen (metabolism)</term>
<term>Protein Disulfide Reductase (Glutathione) (metabolism)</term>
<term>Reactive Nitrogen Species (metabolism)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Structure-Activity Relationship (MeSH)</term>
<term>Substrate Specificity (MeSH)</term>
<term>Thioredoxins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Catalyse (MeSH)</term>
<term>Complexes multienzymatiques (composition chimique)</term>
<term>Complexes multienzymatiques (métabolisme)</term>
<term>Cétoacides (métabolisme)</term>
<term>Espèces réactives de l'azote (métabolisme)</term>
<term>Espèces réactives de l'oxygène (métabolisme)</term>
<term>Fer (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Mixed function oxygenases (composition chimique)</term>
<term>Mixed function oxygenases (métabolisme)</term>
<term>Métabolisme énergétique (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Oxygène (composition chimique)</term>
<term>Oxygène (métabolisme)</term>
<term>Protein-disulfide reductase (glutathione) (métabolisme)</term>
<term>Relation structure-activité (MeSH)</term>
<term>Spécificité du substrat (MeSH)</term>
<term>Thiorédoxines (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Mixed Function Oxygenases</term>
<term>Multienzyme Complexes</term>
<term>Oxygen</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Iron</term>
<term>Keto Acids</term>
<term>Mixed Function Oxygenases</term>
<term>Multienzyme Complexes</term>
<term>Oxygen</term>
<term>Protein Disulfide Reductase (Glutathione)</term>
<term>Reactive Nitrogen Species</term>
<term>Reactive Oxygen Species</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Complexes multienzymatiques</term>
<term>Mixed function oxygenases</term>
<term>Oxygène</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Complexes multienzymatiques</term>
<term>Cétoacides</term>
<term>Espèces réactives de l'azote</term>
<term>Espèces réactives de l'oxygène</term>
<term>Fer</term>
<term>Mixed function oxygenases</term>
<term>Oxygène</term>
<term>Protein-disulfide reductase (glutathione)</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Catalysis</term>
<term>Energy Metabolism</term>
<term>Humans</term>
<term>Oxidation-Reduction</term>
<term>Structure-Activity Relationship</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Catalyse</term>
<term>Humains</term>
<term>Métabolisme énergétique</term>
<term>Oxydoréduction</term>
<term>Relation structure-activité</term>
<term>Spécificité du substrat</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>SIGNIFICANCE</b>
</p>
<p>This article develops a holistic view on production of reactive oxygen species (ROS) by 2-oxo acid dehydrogenase complexes. Recent Advances: Catalytic and structural properties of the complexes and their components evolved to minimize damaging effects of side reactions, including ROS generation, simultaneously exploiting the reactions for homeostatic signaling.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CRITICAL ISSUES</b>
</p>
<p>Side reactions of the complexes, characterized in vitro, are analyzed in view of protein interactions and conditions in vivo. Quantitative data support prevalence of the forward 2-oxo acid oxidation over the backward NADH oxidation in feeding physiologically significant ROS production by the complexes. Special focus on interactions between the active sites within 2-oxo acid dehydrogenase complexes highlights the central relevance of the complex-bound thiyl radicals in regulation of and signaling by complex-generated ROS. The thiyl radicals arise when dihydrolipoyl residues of the complexes regenerate FADH</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>FUTURE DIRECTIONS</b>
</p>
<p>Interaction of 2-oxo acid dehydrogenase complexes with thioredoxins (TRXs), peroxiredoxins, and glutaredoxins mediates scavenging of the thiyl radicals and ROS generated by the complexes, underlying signaling of disproportional availability of 2-oxo acids, CoA, and NAD</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30187773</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>07</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1557-7716</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>30</Volume>
<Issue>16</Issue>
<PubDate>
<Year>2019</Year>
<Month>06</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Antioxidants & redox signaling</Title>
<ISOAbbreviation>Antioxid Redox Signal</ISOAbbreviation>
</Journal>
<ArticleTitle>Redox-Driven Signaling: 2-Oxo Acid Dehydrogenase Complexes as Sensors and Transmitters of Metabolic Imbalance.</ArticleTitle>
<Pagination>
<MedlinePgn>1911-1947</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1089/ars.2017.7311</ELocationID>
<Abstract>
<AbstractText Label="SIGNIFICANCE">This article develops a holistic view on production of reactive oxygen species (ROS) by 2-oxo acid dehydrogenase complexes. Recent Advances: Catalytic and structural properties of the complexes and their components evolved to minimize damaging effects of side reactions, including ROS generation, simultaneously exploiting the reactions for homeostatic signaling.</AbstractText>
<AbstractText Label="CRITICAL ISSUES">Side reactions of the complexes, characterized in vitro, are analyzed in view of protein interactions and conditions in vivo. Quantitative data support prevalence of the forward 2-oxo acid oxidation over the backward NADH oxidation in feeding physiologically significant ROS production by the complexes. Special focus on interactions between the active sites within 2-oxo acid dehydrogenase complexes highlights the central relevance of the complex-bound thiyl radicals in regulation of and signaling by complex-generated ROS. The thiyl radicals arise when dihydrolipoyl residues of the complexes regenerate FADH
<sub>2</sub>
from the flavin semiquinone coproduced with superoxide anion radical in 1e
<sup>-</sup>
oxidation of FADH
<sub>2</sub>
by molecular oxygen.</AbstractText>
<AbstractText Label="FUTURE DIRECTIONS">Interaction of 2-oxo acid dehydrogenase complexes with thioredoxins (TRXs), peroxiredoxins, and glutaredoxins mediates scavenging of the thiyl radicals and ROS generated by the complexes, underlying signaling of disproportional availability of 2-oxo acids, CoA, and NAD
<sup>+</sup>
in key metabolic branch points through thiol/disulfide exchange and medically important hypoxia-inducible factor, mammalian target of rapamycin (mTOR), poly (ADP-ribose) polymerase, and sirtuins. High reactivity of the coproduced ROS and thiyl radicals to iron/sulfur clusters and nitric oxide, peroxynitrite reductase activity of peroxiredoxins and transnitrosylating function of thioredoxin, implicate the side reactions of 2-oxo acid dehydrogenase complexes in nitric oxide-dependent signaling and damage.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bunik</LastName>
<ForeName>Victoria I</ForeName>
<Initials>VI</Initials>
<AffiliationInfo>
<Affiliation>1 Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>2 Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russian Federation.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>10</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Antioxid Redox Signal</MedlineTA>
<NlmUniqueID>100888899</NlmUniqueID>
<ISSNLinking>1523-0864</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007651">Keto Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009097">Multienzyme Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D026361">Reactive Nitrogen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C491203">TXN protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>52500-60-4</RegistryNumber>
<NameOfSubstance UI="D013879">Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D006899">Mixed Function Oxygenases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.4.2</RegistryNumber>
<NameOfSubstance UI="D011490">Protein Disulfide Reductase (Glutathione)</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>S88TT14065</RegistryNumber>
<NameOfSubstance UI="D010100">Oxygen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="ErratumIn">
<RefSource>Antioxid Redox Signal. 2019 Sep 20;31(9):671</RefSource>
<PMID Version="1">31361539</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002384" MajorTopicYN="N">Catalysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004734" MajorTopicYN="N">Energy Metabolism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007651" MajorTopicYN="N">Keto Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006899" MajorTopicYN="N">Mixed Function Oxygenases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009097" MajorTopicYN="N">Multienzyme Complexes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="Y">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010100" MajorTopicYN="N">Oxygen</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011490" MajorTopicYN="N">Protein Disulfide Reductase (Glutathione)</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026361" MajorTopicYN="N">Reactive Nitrogen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013329" MajorTopicYN="N">Structure-Activity Relationship</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013879" MajorTopicYN="N">Thioredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">2-oxo acid dehydrogenase</Keyword>
<Keyword MajorTopicYN="Y">cellular defense</Keyword>
<Keyword MajorTopicYN="Y">lipoate</Keyword>
<Keyword MajorTopicYN="Y">nitrosylation</Keyword>
<Keyword MajorTopicYN="Y">peroxide</Keyword>
<Keyword MajorTopicYN="Y">thioredoxin</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>9</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>9</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30187773</ArticleId>
<ArticleId IdType="doi">10.1089/ars.2017.7311</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Russie</li>
</country>
<region>
<li>District fédéral central</li>
</region>
<settlement>
<li>Moscou</li>
</settlement>
</list>
<tree>
<country name="Russie">
<region name="District fédéral central">
<name sortKey="Bunik, Victoria I" sort="Bunik, Victoria I" uniqKey="Bunik V" first="Victoria I" last="Bunik">Victoria I. Bunik</name>
</region>
<name sortKey="Bunik, Victoria I" sort="Bunik, Victoria I" uniqKey="Bunik V" first="Victoria I" last="Bunik">Victoria I. Bunik</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000126 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000126 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30187773
   |texte=   Redox-Driven Signaling: 2-Oxo Acid Dehydrogenase Complexes as Sensors and Transmitters of Metabolic Imbalance.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30187773" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020